Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model
dc.contributor.author | Graziadei, Helton | |
dc.contributor.author | Lijoi, Antonio | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | PAULO CILAS MARQUES FILHO | |
dc.contributor.author | Prünster, Igor | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Graziadei, Helton | |
dc.creator | Lijoi, Antonio | |
dc.creator | Prünster, Igor | |
dc.date.accessioned | 2022-08-24T20:50:53Z | |
dc.date.available | 2022-08-24T20:50:53Z | |
dc.date.issued | 2020 | |
dc.description.other | We examine issues of prior sensitivity in a semi-parametric hierarchical extension of the INAR(p) model with innovation rates clustered according to a Pitman–Yor process placed at the top of the model hierarchy. Our main finding is a graphical criterion that guides the specification of the hyperparameters of the Pitman–Yor process base measure. We show how the discount and concentration parameters interact with the chosen base measure to yield a gain in terms of the robustness of the inferential results. The forecasting performance of the model is exemplified in the analysis of a time series of worldwide earthquake events, for which the new model outperforms the original INAR(p) model. | pt_BR |
dc.format.extent | 12 p. | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | doi.org/10.3390/e22010069 | pt_BR |
dc.identifier.issue | 69 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4110 | |
dc.identifier.volume | 22 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Não informado | pt_BR |
dc.relation.isbound | Produção vinculada ao Núcleo de Ciências de Dados e Decisão | |
dc.relation.ispartof | Entropy | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | time series of counts | pt_BR |
dc.subject.keywords | Bayesian hierarchical modeling | pt_BR |
dc.subject.keywords | Bayesian nonparametrics | pt_BR |
dc.subject.keywords | Pitman–Yor process | pt_BR |
dc.subject.keywords | prior sensitivity | pt_BR |
dc.subject.keywords | clustering | pt_BR |
dc.subject.keywords | Bayesian forecasting | pt_BR |
dc.title | Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www.mdpi.com/1099-4300/22/1/69 | |
local.subject.cnpq | Ciências Sociais Aplicadas | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication | 81f1ea11-d601-4050-ae7b-e6aff836da3f | |
relation.isAuthorOfPublication.latestForDiscovery | 81f1ea11-d601-4050-ae7b-e6aff836da3f |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2020_Prior Sensitivity Analysis_TC.pdf
- Tamanho:
- 681.02 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2020_Prior Sensitivity Analysis_TC
- Nome:
- Acesso_Primeira Pagina_Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model.pdf
- Tamanho:
- 148.93 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: