Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model

dc.contributor.authorGraziadei, Helton
dc.contributor.authorLijoi, Antonio
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.contributor.authorPAULO CILAS MARQUES FILHO
dc.contributor.authorPrünster, Igor
dc.coverage.cidadeNão informadopt_BR
dc.coverage.paisNão Informadopt_BR
dc.creatorGraziadei, Helton
dc.creatorLijoi, Antonio
dc.creatorPrünster, Igor
dc.date.accessioned2022-08-24T20:50:53Z
dc.date.available2022-08-24T20:50:53Z
dc.date.issued2020
dc.description.otherWe examine issues of prior sensitivity in a semi-parametric hierarchical extension of the INAR(p) model with innovation rates clustered according to a Pitman–Yor process placed at the top of the model hierarchy. Our main finding is a graphical criterion that guides the specification of the hyperparameters of the Pitman–Yor process base measure. We show how the discount and concentration parameters interact with the chosen base measure to yield a gain in terms of the robustness of the inferential results. The forecasting performance of the model is exemplified in the analysis of a time series of worldwide earthquake events, for which the new model outperforms the original INAR(p) model.pt_BR
dc.format.extent12 p.pt_BR
dc.format.mediumDigitalpt_BR
dc.identifier.doidoi.org/10.3390/e22010069pt_BR
dc.identifier.issue69pt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/4110
dc.identifier.volume22pt_BR
dc.language.isoInglêspt_BR
dc.publisherNão informadopt_BR
dc.relation.isboundProdução vinculada ao Núcleo de Ciências de Dados e Decisão
dc.relation.ispartofEntropypt_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR.pt_BR
dc.subject.keywordstime series of countspt_BR
dc.subject.keywordsBayesian hierarchical modelingpt_BR
dc.subject.keywordsBayesian nonparametricspt_BR
dc.subject.keywordsPitman–Yor processpt_BR
dc.subject.keywordsprior sensitivitypt_BR
dc.subject.keywordsclusteringpt_BR
dc.subject.keywordsBayesian forecastingpt_BR
dc.titlePrior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Modelpt_BR
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://www.mdpi.com/1099-4300/22/1/69
local.subject.cnpqCiências Sociais Aplicadas
local.subject.cnpqCiências Sociais Aplicadaspt_BR
local.typeArtigo Científicopt_BR
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication81f1ea11-d601-4050-ae7b-e6aff836da3f
relation.isAuthorOfPublication.latestForDiscovery81f1ea11-d601-4050-ae7b-e6aff836da3f

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
N/D
Nome:
R_Artigo_2020_Prior Sensitivity Analysis_TC.pdf
Tamanho:
681.02 KB
Formato:
Adobe Portable Document Format
Descrição:
R_Artigo_2020_Prior Sensitivity Analysis_TC
Imagem de Miniatura
Nome:
Acesso_Primeira Pagina_Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model.pdf
Tamanho:
148.93 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
282 B
Formato:
Item-specific license agreed upon to submission
Descrição: