Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models
dc.contributor.author | Kastner, Gregor | |
dc.contributor.author | Frühwirth-Schnatter, Sylvia | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Kastner, Gregor | |
dc.creator | Frühwirth-Schnatter, Sylvia | |
dc.date.accessioned | 2022-08-20T18:32:09Z | |
dc.date.available | 2022-08-20T18:32:09Z | |
dc.date.issued | 2017 | |
dc.description.other | We discuss efficient Bayesian estimation of dynamic covariance matrices in multivariate time series through a factor stochastic volatility model. In particular, we propose two interweaving strategies to substantially accelerate convergence and mixing of standard MCMC approaches. Similar to marginal data augmentation techniques, the proposed acceleration procedures exploit nonidentifiability issues which frequently arise in factor models. Our new interweaving strategies are easy to implement and come at almost no extra computational cost; nevertheless, they can boost estimation efficiency by several orders of magnitude as is shown in extensive simulation studies. To conclude, the application of our algorithm to a 26-dimensional exchange rate dataset illustrates the superior performance of the new approach for real-world data. Supplementary materials for this article are available online. | pt_BR |
dc.format.extent | p. 905-917 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | https://doi.org/10.1080/10618600.2017.1322091 | pt_BR |
dc.identifier.issn | 15372715 | pt_BR |
dc.identifier.issue | 4 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4069 | |
dc.identifier.volume | 26 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Não informado | pt_BR |
dc.relation.ispartof | Journal of Computational and Graphical Statistics | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | Ancillarity-sufficiency interweaving strategy (ASIS) | pt_BR |
dc.subject.keywords | Curse of dimensionality | pt_BR |
dc.subject.keywords | Data augmentation | pt_BR |
dc.subject.keywords | Dynamic correlation | pt_BR |
dc.subject.keywords | Dynamic covariance | pt_BR |
dc.subject.keywords | Exchange rate data | pt_BR |
dc.subject.keywords | Markov chain Monte Carlo (MCMC) | pt_BR |
dc.title | Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www.tandfonline.com/doi/full/10.1080/10618600.2017.1322091 | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2017_Efficient Bayesian Inference for Multivariate_TC.pdf
- Tamanho:
- 3.01 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2017_Efficient Bayesian Inference for Multivariate_TC
N/D
- Nome:
- Acesso_Primeira Pagina_Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models.pdf
- Tamanho:
- 727.58 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: