Granger Causality among Graphs and Application to Functional Brain Connectivity in Autism Spectrum Disorder

dc.contributor.authorRibeiro, Adèle Helena
dc.contributor.authorMACIEL CALEBE VIDAL
dc.contributor.authorSato, João Ricardo
dc.contributor.authorFujita, André
dc.creatorRibeiro, Adèle Helena
dc.creatorSato, João Ricardo
dc.creatorFujita, André
dc.date.accessioned2024-11-12T20:11:53Z
dc.date.available2024-11-12T20:11:53Z
dc.date.issued2021
dc.description.abstractGraphs/networks have become a powerful analytical approach for data modeling. Besides, with the advances in sensor technology, dynamic time-evolving data have become more common. In this context, one point of interest is a better understanding of the information flow within and between networks. Thus, we aim to infer Granger causality (G-causality) between networks’ time series. In this case, the straightforward application of the well-established vector autoregressive model is not feasible. Consequently, we require a theoretical framework for modeling time-varying graphs. One possibility would be to consider a mathematical graph model with time-varying parameters (assumed to be random variables) that generates the network. Suppose we identify G-causality between the graph models’ parameters. In that case, we could use it to define a G-causality between graphs. Here, we show that even if the model is unknown, the spectral radius is a reasonable estimate of some random graph model parameters. We illustrate our proposal’s application to study the relationship between brain hemispheres of controls and children diagnosed with Autism Spectrum Disorder (ASD). We show that the G-causality intensity from the brain’s right to the left hemisphere is different between ASD and controls.en
dc.formatDigital
dc.format.extent21 p.
dc.identifier.doi10.3390/e23091204
dc.identifier.issn1099-4300
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/7217
dc.language.isoPortuguês
dc.relation.ispartofEntropy
dc.subjectGranger causalityen
dc.subjectRandom graphsen
dc.subjectSpectral radiusen
dc.subjectBrain connectivityen
dc.subjectAutism spectrum disorderen
dc.titleGranger Causality among Graphs and Application to Functional Brain Connectivity in Autism Spectrum Disorder
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://www.mdpi.com/1099-4300/23/9/1204
local.publisher.countryNão Informado
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
local.subject.cnpqENGENHARIAS::ENGENHARIA BIOMEDICA
local.subject.cnpqCIENCIAS DA SAUDE
local.typeArtigo Científico
publicationissue.issueNumber9
publicationvolume.volumeNumber23
relation.isAuthorOfPublication3c34d0f1-1f7d-4405-a994-3484d365cebf
relation.isAuthorOfPublication.latestForDiscovery3c34d0f1-1f7d-4405-a994-3484d365cebf
Arquivos
Pacote Original
Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
Primeira_Pagina_Artigo_2021_Granger_causality_among_graphs_and_application_to_functional_brain_connectivity_in_autism_spectrum_disorder_TC.pdf
Tamanho:
164.52 KB
Formato:
Adobe Portable Document Format
N/D
Nome:
ACESSO_RESTRITO_Artigo_2021_Granger_causality_among_graphs_and_application_to_functional_brain_connectivity_in_autism_spectrum_disorder_TC.pdf
Tamanho:
2.71 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: