Bayesian semiparametric Markov switching stochastic volatility model

dc.contributor.authorVirbickaité, Audrone
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.coverage.cidadeNão informadopt_BR
dc.coverage.paisNão Informadopt_BR
dc.creatorVirbickaité, Audrone
dc.date.accessioned2022-08-23T19:48:48Z
dc.date.available2022-08-23T19:48:48Z
dc.date.issued2019
dc.description.otherThis paper proposes a novel Bayesian semiparametric stochastic volatility model with Markov switching regimes for modeling the dynamics of the financial returns. The distribution of the error term of the returns is modeled as an infinite mixture of Normals; meanwhile, the intercept of the volatility equation is allowed to switch between two regimes. The proposed model is estimated using a novel sequential Monte Carlo method called particle learning that is especially well suited for state-space models. The model is tested on simulated data and, using real financial times series, compared to a model without the Markov switching regimes. The results show that including a Markov switching specification provides higher predictive power for the entire distribution, as well as in the tails of the distribution. Finally, the estimate of the persistence parameter decreases significantly, a finding consistent with previous empirical studies.pt_BR
dc.format.extentp. 978-997pt_BR
dc.format.mediumDigitalpt_BR
dc.identifier.doidoi.org/10.1002/asmb.2434pt_BR
dc.identifier.issue4pt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/4098
dc.identifier.volume35pt_BR
dc.language.isoInglêspt_BR
dc.publisherNão informadopt_BR
dc.relation.isboundProdução vinculada ao Núcleo de Ciências de Dados e Decisão
dc.relation.ispartofApplied Stochastic Models in Business and Industrypt_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR.pt_BR
dc.subject.keywordsBayes factorpt_BR
dc.subject.keywordsDirichlet process mixturept_BR
dc.subject.keywordsParticle learningpt_BR
dc.subject.keywordsSequential Monte Carlopt_BR
dc.titleBayesian semiparametric Markov switching stochastic volatility modelpt_BR
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://onlinelibrary.wiley.com/doi/10.1002/asmb.2434
local.subject.cnpqCiências Sociais Aplicadaspt_BR
local.typeArtigo Científicopt_BR
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
N/D
Nome:
R_Artigo_2019_Bayesian semiparametric Markov_TC.pdf
Tamanho:
1.45 MB
Formato:
Adobe Portable Document Format
Descrição:
R_Artigo_2019_Bayesian semiparametric Markov_TC
Imagem de Miniatura
Nome:
Acesso_Primeira Pagina_Bayesian semiparametric Markov switching stochastic volatility model.pdf
Tamanho:
47.97 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
282 B
Formato:
Item-specific license agreed upon to submission
Descrição: