The evolution of knowledge on genes associated with human diseases
dc.contributor.author | Lüscher-Dias, Thomaz | |
dc.contributor.author | Dalmolin, Rodrigo Juliani Siqueira | |
dc.contributor.author | PAULO DE PAIVA ROSA AMARAL | |
dc.contributor.author | Alves, Tiago Lubiana | |
dc.contributor.author | Schuch, Viviane | |
dc.contributor.author | Franco, Glória Regina | |
dc.contributor.author | Nakaya, Helder I. | |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Lüscher-Dias, Thomaz | |
dc.creator | Dalmolin, Rodrigo Juliani Siqueira | |
dc.creator | Alves, Tiago Lubiana | |
dc.creator | Schuch, Viviane | |
dc.creator | Franco, Glória Regina | |
dc.creator | Nakaya, Helder I. | |
dc.date.accessioned | 2022-12-10T18:45:54Z | |
dc.date.available | 2022-12-10T18:45:54Z | |
dc.date.issued | 2022 | |
dc.description.notes | Texto completo | pt_BR |
dc.description.other | Thousands of biomedical scientific articles, including those describing genes asso ciated with human diseases, are published every week. Computational methods such as text mining and machine learning algorithms are now able to automati cally detect these associations. In this study, we used a cognitive computing text-mining application to construct a knowledge network comprising 3,723 genes and 99 diseases. We then tracked the yearly changes on these networks to analyze how our knowledge has evolved in the past 30 years. Our systems approach helped to unravel the molecular bases of diseases and detect shared mechanisms between clinically distinct diseases. It also revealed that multi-pur pose therapeutic drugs target genes that are commonly associated with several psychiatric, inflammatory, or infectious disorders. By navigating this knowledge tsunami, we were able to extract relevant biological information and insights about human diseases. | pt_BR |
dc.format.extent | 21 p. | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | 10.1016/j.isci.2021.103610 | pt_BR |
dc.identifier.issue | 103610 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4885 | |
dc.identifier.volume | 25 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Não informado | pt_BR |
dc.relation.ispartof | iScience | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.subject.keywords | Não informado | pt_BR |
dc.title | The evolution of knowledge on genes associated with human diseases | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://doi.org/10.1016/j.isci.2021.103610 | |
local.subject.cnpq | Ciências Biológicas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 90769ac2-5975-4a9d-8316-ee9653a944bd | |
relation.isAuthorOfPublication.latestForDiscovery | 90769ac2-5975-4a9d-8316-ee9653a944bd |
Arquivos
Pacote Original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2021_The evolution of knowledge_TC.pdf
- Tamanho:
- 4.85 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2021_The evolution of knowledge_TC
Carregando...
- Nome:
- Acesso_Primeira Pagina_The evolution of knowledge on genes associated with human diseases.pdf
- Tamanho:
- 515.12 KB
- Formato:
- Adobe Portable Document Format
Licença do Pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: