The evolution of knowledge on genes associated with human diseases

dc.contributor.authorLüscher-Dias, Thomaz
dc.contributor.authorDalmolin, Rodrigo Juliani Siqueira
dc.contributor.authorPAULO DE PAIVA ROSA AMARAL
dc.contributor.authorAlves, Tiago Lubiana
dc.contributor.authorSchuch, Viviane
dc.contributor.authorFranco, Glória Regina
dc.contributor.authorNakaya, Helder I.
dc.coverage.paisNão Informadopt_BR
dc.creatorLüscher-Dias, Thomaz
dc.creatorDalmolin, Rodrigo Juliani Siqueira
dc.creatorAlves, Tiago Lubiana
dc.creatorSchuch, Viviane
dc.creatorFranco, Glória Regina
dc.creatorNakaya, Helder I.
dc.date.accessioned2022-12-10T18:45:54Z
dc.date.available2022-12-10T18:45:54Z
dc.date.issued2022
dc.description.notesTexto completopt_BR
dc.description.otherThousands of biomedical scientific articles, including those describing genes asso ciated with human diseases, are published every week. Computational methods such as text mining and machine learning algorithms are now able to automati cally detect these associations. In this study, we used a cognitive computing text-mining application to construct a knowledge network comprising 3,723 genes and 99 diseases. We then tracked the yearly changes on these networks to analyze how our knowledge has evolved in the past 30 years. Our systems approach helped to unravel the molecular bases of diseases and detect shared mechanisms between clinically distinct diseases. It also revealed that multi-pur pose therapeutic drugs target genes that are commonly associated with several psychiatric, inflammatory, or infectious disorders. By navigating this knowledge tsunami, we were able to extract relevant biological information and insights about human diseases.pt_BR
dc.format.extent21 p.pt_BR
dc.format.mediumDigitalpt_BR
dc.identifier.doi10.1016/j.isci.2021.103610pt_BR
dc.identifier.issue103610pt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/4885
dc.identifier.volume25pt_BR
dc.language.isoInglêspt_BR
dc.publisherNão informadopt_BR
dc.relation.ispartofiSciencept_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITORpt_BR
dc.subject.keywordsNão informadopt_BR
dc.titleThe evolution of knowledge on genes associated with human diseasespt_BR
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://doi.org/10.1016/j.isci.2021.103610
local.subject.cnpqCiências Biológicaspt_BR
local.typeArtigo Científicopt_BR
relation.isAuthorOfPublication90769ac2-5975-4a9d-8316-ee9653a944bd
relation.isAuthorOfPublication.latestForDiscovery90769ac2-5975-4a9d-8316-ee9653a944bd
Arquivos
Pacote Original
Agora exibindo 1 - 2 de 2
N/D
Nome:
R_Artigo_2021_The evolution of knowledge_TC.pdf
Tamanho:
4.85 MB
Formato:
Adobe Portable Document Format
Descrição:
R_Artigo_2021_The evolution of knowledge_TC
Carregando...
Imagem de Miniatura
Nome:
Acesso_Primeira Pagina_The evolution of knowledge on genes associated with human diseases.pdf
Tamanho:
515.12 KB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
282 B
Formato:
Item-specific license agreed upon to submission
Descrição: