Bayesian generalizations of the integer-valued autoregressive model

Unidades Organizacionais

Resumo

We develop two Bayesian generalizations of the Poisson integer-valued autoregressive model. The AdINAR(1) model accounts for overdispersed data by means of an innovation process whose marginal distributions are finite mixtures, while the DP-INAR(1) model is a hierarchical extension involving a Dirichlet process, which is capable of modeling a latent pattern of heterogeneity in the distribution of the innovations rates. The probabilistic forecasting capabilities of both models are put to test in the analysis of crime data in Pittsburgh, with favorable results.

Palavras-chave

Vínculo institucional

Titulo de periódico

Journal of Applied Statistics
DOI

Título de Livro

URL na Scopus

Idioma

Inglês

Notas

Membros da banca

Área do Conhecimento CNPQ

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por