Deep learning models for inflation forecasting

Imagem de Miniatura

Autores

Theoharidis, Alexandre Fernandes
Hosszejni, Darjus

Orientador

Co-orientadores

Citações na Scopus

Tipo de documento

Artigo Científico

Data

2023

Unidades Organizacionais

Resumo

We propose a hybrid deep learning model that merges Variational Autoencoders and Convolutional LSTM Networks (VAE-ConvLSTM) to forecast inflation. Using a public macroeconomic database that comprises 134 monthly US time series from January 1978 to December 2019, the proposed model is compared against several popular econometric and machine learning benchmarks, including Ridge regression, LASSO regression, Random Forests, Bayesian methods, VECM, and multilayer perceptron. We find that VAE-ConvLSTM outperforms the competing models in terms of consistency and out-of-sample performance. The robustness of such conclusion is ensured via cross-validation and Monte-Carlo simulations using different training, validation, and test samples. Our results suggest that macroeconomic forecasting could take advantage of deep learning models when tackling nonlinearities and nonstationarity, potentially delivering superior performance in comparison to traditional econometric approaches based on linear, stationary models.

Palavras-chave

Autoencoders; Convolutional networks; Deep learning; Inflation forecasting; LSTM networks; Machine learning
Vínculo institucional

Titulo de periódico

Applied Stochastic Models in Business and Industry
DOI

Título de Livro

URL na Scopus

Idioma

Inglês

Notas

Membros da banca

Área do Conhecimento CNPQ

CIENCIAS EXATAS E DA TERRA::MATEMATICA

CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA

ENGENHARIAS::ENGENHARIA ELETRICA

CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO

CIENCIAS SOCIAIS APLICADAS::ECONOMIA

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por