Deep learning models for inflation forecasting

dc.contributor.authorTheoharidis, Alexandre Fernandes
dc.contributor.authorDIOGO ABRY GUILLEN
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.contributor.authorHosszejni, Darjus
dc.creatorTheoharidis, Alexandre Fernandes
dc.creatorHosszejni, Darjus
dc.date.accessioned2024-10-28T22:14:21Z
dc.date.available2024-10-28T22:14:21Z
dc.date.issued2023
dc.description.abstractWe propose a hybrid deep learning model that merges Variational Autoencoders and Convolutional LSTM Networks (VAE-ConvLSTM) to forecast inflation. Using a public macroeconomic database that comprises 134 monthly US time series from January 1978 to December 2019, the proposed model is compared against several popular econometric and machine learning benchmarks, including Ridge regression, LASSO regression, Random Forests, Bayesian methods, VECM, and multilayer perceptron. We find that VAE-ConvLSTM outperforms the competing models in terms of consistency and out-of-sample performance. The robustness of such conclusion is ensured via cross-validation and Monte-Carlo simulations using different training, validation, and test samples. Our results suggest that macroeconomic forecasting could take advantage of deep learning models when tackling nonlinearities and nonstationarity, potentially delivering superior performance in comparison to traditional econometric approaches based on linear, stationary models.en
dc.formatDigital
dc.format.extentp. 447 - 470
dc.identifier.doi10.1002/asmb.2757
dc.identifier.issn1524-1904
dc.identifier.issn1526-4025
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/7188
dc.language.isoInglês
dc.relation.isboundProdução vinculada ao Núcleo de Ciências de Dados e Decisão
dc.relation.ispartofApplied Stochastic Models in Business and Industry
dc.subjectAutoencodersen
dc.subjectConvolutional networksen
dc.subjectDeep learningen
dc.subjectInflation forecastingen
dc.subjectLSTM networksen
dc.subjectMachine learningen
dc.titleDeep learning models for inflation forecasting
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://onlinelibrary.wiley.com/doi/10.1002/asmb.2757
local.publisher.countryNão Informado
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::MATEMATICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
local.subject.cnpqENGENHARIAS::ENGENHARIA ELETRICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
local.subject.cnpqCIENCIAS SOCIAIS APLICADAS::ECONOMIA
local.typeArtigo Científico
publicationissue.issueNumber3
publicationvolume.volumeNumber39
relation.isAuthorOfPublication42467f12-8c1d-4822-b418-d3aebeda63b8
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery42467f12-8c1d-4822-b418-d3aebeda63b8
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
N/D
Nome:
ACESSO_RESTRITO_Artigo_2023_Deep_learning_models_for_inflation_forecasting_TC.pdf
Tamanho:
1.54 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: