The Illusion of the Illusion of Sparsity: the Effects of Using a Wrong Prior
Autores
Fava, Bruno Vinicius Nunes
Orientador
Co-orientadores
Citações na Scopus
Tipo de documento
Trabalho de Conclusão de Curso
Data
2019
Resumo
The emergence of Big Data raises the question of how to model statistical series
when there is a big number of possible regressors. This monograph addresses the issue
by comparing the possibility of using dense or sparse models in a Bayesian approach,
allowing for variable selection and shrinkage. We discuss the results reached by Giannone,
Lenza e Primiceri (2018) through a “Spike-and-Slab” prior, that suggest an “illusion of
sparsity” in economic datasets, as no clear patterns of sparsity could be found. We
make a further revision of the posterior distributions of the model, and propose three
experiments to evaluate the robustness of the adopted prior distribution. We find that
the model indirectly induces variable selection and shrinkage, what suggests that the
“illusion of sparsity” is, itself, an illusion
Palavras-chave
Sparsity; Model selection; High Dimensional Data; Shrinkage; Bayesian Econometrics
Titulo de periódico
URL da fonte
Título de Livro
URL na Scopus
Idioma
Português
Notas
Membros da banca
Área do Conhecimento CNPQ
Ciências Sociais Aplicadas