The Illusion of the Illusion of Sparsity: the Effects of Using a Wrong Prior

Imagem de Miniatura

Autores

Fava, Bruno Vinicius Nunes

Co-orientadores

Citações na Scopus

Tipo de documento

Trabalho de Conclusão de Curso

Data

2019

Unidades Organizacionais

Resumo

The emergence of Big Data raises the question of how to model statistical series when there is a big number of possible regressors. This monograph addresses the issue by comparing the possibility of using dense or sparse models in a Bayesian approach, allowing for variable selection and shrinkage. We discuss the results reached by Giannone, Lenza e Primiceri (2018) through a “Spike-and-Slab” prior, that suggest an “illusion of sparsity” in economic datasets, as no clear patterns of sparsity could be found. We make a further revision of the posterior distributions of the model, and propose three experiments to evaluate the robustness of the adopted prior distribution. We find that the model indirectly induces variable selection and shrinkage, what suggests that the “illusion of sparsity” is, itself, an illusion

Palavras-chave

Sparsity; Model selection; High Dimensional Data; Shrinkage; Bayesian Econometrics

Titulo de periódico

URL da fonte

Título de Livro

URL na Scopus

Idioma

Português

Notas

Área do Conhecimento CNPQ

Ciências Sociais Aplicadas

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por