Mestrado Profissional em Economia

URI permanente para esta coleçãohttps://repositorio.insper.edu.br/handle/11224/3240

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Dissertação
    Measuring core inflation in Brazil using an svar approach
    (2020) Rabe, João Paulo De Faria Tavares
    O objetivo principal deste artigo é apresentar uma nova medida de núcleo da inflação para a economia brasileira. Diferente das medidas estatísticas e ateóricas usualmente utilizadas pelo Banco Central do Brasil, a metodologia é baseada em Quah e Vahey (1995) e tem como alicerce a teoria de que a Curva de Phillips é vertical no longo prazo, assim, o núcleo da inflação é calculado como o componente da inflação que não impacta o nível de produto no longo prazo. Essa é uma abordagem quase não explorada no Brasil, e os resultados mostraram que poderia ser benéfica se incluída no conjunto de medidas seguidas pelo Banco Central. Para realizar o cálculo dessa medida de núcleo de inflação, são usados dois modelos estruturais de vetores autoregressivos. Primeiramente, estima-se o modelo bivariado proposto por Quah e Vahey (1995), em que a diferença (log) do nível de produto e a diferença (log) do nível de preços são utilizados com o objetivo de identificar os choques estrturais. Os resultados, conforme discutido na literatura relacionada, mostraram que ambos têm um padrão semelhante ao que a teoria identifica como choques positivos de demanda e oferta. Além disso, à luz de Bjørnland (2000) e Martel (2008), o segundo modelo estimado adiciona um índice de preços de commodities para melhor identificar os choques que afetam o sistema. Ambos os modelos apontam que a inflação medida e as medidas de núcleo seguem a mesma tendência, enquanto que a inflação de curto prazo (diferença entre a inflação medida e o núcleo calculado) se deve principalmente à choques de oferta. Embora pareça não haver consenso sobre qual é a melhor metodologia para calcular uma medida de núcleo de inflação, a literatura recomenda que uma medida de núcleo de inflação tenha algumas características específicas. Portanto, é feita uma comparação entre as medidas produzidas pelos modelos SVAR e as tipicamente utilizadas pelo Banco Central do Brasil para avaliar essas características. Os resultados apontaram que, entre as medidas de núcleo analisadas, as únicas sistematicamente não vieasadas são produzidas pela abordagem SVAR. Além disso, a metodologia SVAR também apresentou uma maior aderência à tendência da inflação do que os métodos de exclusão, enquanto a medida de núcleo por médias aparadas - por construção - é a que apresenta a melhor estatítisca. Finalmente, as medidas de núcleo com a melhor previsão de desempenho (fora da amostra) são provenientes do sistema (SVAR) trivariado, o Ex3 e o P55.
  • Imagem de Miniatura
    Dissertação
    Forecasting Inflation Using Deep Learning: An Application of Convolutional LSTM Networks and Variational Autoencoders
    (2021) Theoharidis, Alexandre Fernandes
    Esse trabalho apresenta um modelo inovador baseado em deep learning para previsão de inflação, um problema desafiador e, até o momento, sem solução na Macroeconomia moderna. Os desafios emergem devido ao comportamento não linear e não estacionário exibido pela inflação na prática, divergindo da dinâmica esperada a partir da Curva de Phillips Neokeynesiana. Consequentemente, modelos econométricos convencionais se mostram incapazes de produzir previsões críveis e consistentes, pois não possuem a flexibilidade necessária para capturar essas complexidades. Nesse contexto, deep learning se apresenta como uma abordagem promissora, dado o seu sucesso no tratamento de dados não lineares e abundantes (big data). Exemplos ilustrativos são encontratos nos campos de reconhecimento de fala, interpretação textual, processamento de imagens e modelagem de séries temporais financeiras, entre outros. Surpreendentemente, apesar de seu potencial, não há aplicações de deep learning ao problema descrito para investigar se há a possibilidade de aprimorar previsões de inflação através dessa técnica. Portanto, como contribuição à literatura, esse estudo propõe um modelo de deep learning híbrido que combina Autoencoders Variacionais com Redes LSTM Convolucionais para ampliar a acurácia das previsões de inflação. O procedimento de estimação do modelo emprega técnicas do estado-da-arte para reduzir a probabilidade de overfitting, tais como a adição de camadas de dropout e batch normalization à arquitetura do modelo. Através de um banco de dados macroeconômicos públicos composto por 134 séries temporais mensais da economia estadunidense, o modelo proposto é comparado contra populares benchmarks econométricos e de machine learning, incluindo a regressão Ridge, a regressão LASSO, Random Forests, métodos Bayesianos, VECM, e o perceptron de múltiplas camadas. Usando observações coletadas no período que se estende de janeiro de 1978 até dezembro de 2019, a análise empírica corrobora a superioridade do modelo em termos de consistência e desempenho fora da amostra. A robustez das conclusões é confirmada mediante cross-validation e simulações usando diferentes amostras de treino, validação e teste.
  • Imagem de Miniatura
    Dissertação
    An Empirical Analysis of the Monetary Policy Committees Composition and its Relationship with Monetary Policy
    (2019) Costa, Guilherme Spilimbergo
    Este artigo testa se as características individuais dos membros dos Comitês de Política Monetária (MPC) são significativamente relacionadas à política monetária. Foi compilado um banco de dados com informações sobre 439 indivíduos, que atuaram como membros do conselho de política monetária em 16 bancos centrais diferentes de 1999 a 2018. Em seguida, usamos modelos de regressão em painel para testar se a composição média de cada MPC é significativa para o desempenho da política monetária, em relação ao nível e a volatilidade da taxa de inflação, e ao trade-off entre a taxa de inflação e o hiato do produto (a inclinação da curva de Phillips). Os resultados indicam que algumas das características individuais dos membros que formam um MPC são relevantes para o desempenho da política monetária. Em particular, encontramos evidências de que: (i) uma proporção maior de membros com doutorado em economia está associada a um menor nível e volatilidade da taxa de inflação, mas também a uma curva de Phillips menos inclinada; (ii) uma maior quantidade de mulheres como membros dos MPCs estão relacionadas com inflação mais baixa e menos volátil; (iii) um MPC com uma idade média entre 55 e 60 anos parece estar ligado a uma inflação menos volátil; e (iv) existem evidências que relacionam uma maior proporção de membros do MPC com experiência anterior no setor privado e na academia com uma taxa de inflação mais baixa.