Probabilistic Nearest Neighbors Classification

dc.contributor.authorFava, Bruno
dc.contributor.authorPAULO CILAS MARQUES FILHO
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.creatorFava, Bruno
dc.date.accessioned2024-10-28T20:12:27Z
dc.date.available2024-10-28T20:12:27Z
dc.date.issued2024
dc.description.abstractAnalysis of the currently established Bayesian nearest neighbors classification model points to a connection between the computation of its normalizing constant and issues of NP-completeness. An alternative predictive model constructed by aggregating the predictive distributions of simpler nonlocal models is proposed, and analytic expressions for the normalizing constants of these nonlocal models are derived, ensuring polynomial time computation without approximations. Experiments with synthetic and real datasets showcase the predictive performance of the proposed predictive model.en
dc.formatDigital
dc.format.extent12 p.
dc.identifier.doi10.3390/e26010039
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/7186
dc.language.isoInglês
dc.relation.isboundProdução vinculada ao Núcleo de Ciências de Dados e Decisão
dc.relation.ispartofEntropy
dc.subjectProbabilistic machine learningen
dc.subjectNearest neighbors classificationen
dc.subjectNP-completenessen
dc.titleProbabilistic Nearest Neighbors Classification
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://www.mdpi.com/1099-4300/26/1/39
local.publisher.countryNão Informado
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::MATEMATICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
local.subject.cnpqENGENHARIAS::ENGENHARIA ELETRICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
local.typeArtigo Científico
publicationissue.issueNumber39
publicationvolume.volumeNumber26
relation.isAuthorOfPublication81f1ea11-d601-4050-ae7b-e6aff836da3f
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery81f1ea11-d601-4050-ae7b-e6aff836da3f
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
N/D
Nome:
ACESSO_RESTRITO_Artigo_2024_Probabilistic_nearest_neighbors_classification_TC.pdf
Tamanho:
1.05 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: