Please use this identifier to cite or link to this item: https://repositorio.insper.edu.br/handle/11224/4286
Full metadata record
DC FieldValueLanguage
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DO USUÁRIO VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR.pt_BR
dc.date.accessioned2022-10-14T14:29:12Z-
dc.date.available2022-10-14T14:29:12Z-
dc.date.issued2022-
dc.identifier.issn0304-4076pt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/4286-
dc.format.extentp. 432-452pt_BR
dc.format.mediumDigitalpt_BR
dc.language.isoInglêspt_BR
dc.publisherElsevierpt_BR
dc.relation.ispartofJournal of Econometricspt_BR
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0304407621001299?via%3Dihubpt_BR
dc.titleGMM quantile regressionpt_BR
dc.typeArtigo Científicopt_BR
dc.description.otherThis paper develops generalized method of moments (GMM) estimation and inference procedures for quantile regression models. We propose a GMM estimator for simultaneous estimation across multiple quantiles. This estimator allows us to model quantile regression coefficients using flexible parametric restrictions across quantiles. The restrictions and simultaneous estimation lead to efficiency gains compared to standard methods. We establish the asymptotic properties of the GMM estimators when the number of quantiles used is fixed and when it diverges to infinity jointly with the sample size. As an alternative to GMM, we also propose a minimum distance estimator over a given subset of quantiles. Moreover, we provide specification tests for the imposed restrictions. The estimators and tests we propose are simple to implement in practice. Monte Carlo simulations provide numerical evidence of the finite sample properties of the methods. Finally, we apply the proposed methods to estimate the effects of smoking on birthweight of live infants at the extreme bottom of the conditional distribution.pt_BR
dc.subject.cnpqCiências Exatas e da Terrapt_BR
dc.subject.keywordsQuantile regressionpt_BR
dc.subject.keywordsGeneralized method of momentspt_BR
dc.identifier.doihttps://doi.org/10.1016/j.jeconom.2020.11.014pt_BR
dc.identifier.issue2pt_BR
dc.identifier.volume230pt_BR
dc.description.notesTexto Completopt_BR
dc.contributor.autorFirpo, Sergio Pinheiro-
dc.contributor.autorGalvao, Antonio F.-
dc.contributor.autorPinto, Cristine Campos de Xavier-
dc.contributor.autorPoirier, Alexandre-
dc.contributor.autorSanroman, Graciela-
dc.coverage.paisNão Informadopt_BR
Appears in Collections:Coleção de Artigos Científicos

Files in This Item:
File Description SizeFormat 
Artigo_2021_GMM Quantile Regression_TC.pdfArtigo_2021_GMM Quantile Regression_TC666.05 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.