Coleção de Artigos Acadêmicos

URI permanente para esta coleçãohttps://repositorio.insper.edu.br/handle/11224/3227

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 7 de 7
  • Artigo Científico
    Quality Perception of São Paulo Transportation Services: A Sentiment Analysis of Citizens’ Satisfaction Regarding Bus Terminuses
    (2024) Beck, Donizete; Teixeira, Marco; Maróstica, Juliana; Ferasso, Marcos
    Purpose: To explore citizens’ satisfaction with all Bus Terminuses (BTs) in São Paulo City, Brazil. Method: This study performed a Sentiment Analysis of citizens' perception of 32 BTs of São Paulo, composed of 8,371 user comments on Google Maps. Originality/Relevance: This study highlights the role of Sentiment Analysis as an optimal tool for Stakeholder Analysis in the Urban Context. Findings: First, Sentiment Analysis is a valuable source for stakeholder oriented urban management. Second, sentiment Analysis provides detailed information about citizen satisfaction, providing valuable cues for urban managers to improve public service quality. Third, Smart Sustainable Cities can provide multiple and massive quantities of data that all kinds of urban stakeholders can use in decision-making processes, which helps perform Sentiment Analysis. Fourth, Sentiment Analysis is helpful for BT managers to improve BT services based on the users' feelings. Finally, further studies should explore sentiment classification in Sentiment Analysis of the critical aspects unfolded in this study as well as for exploring responsiveness of municipal public services. Methodological Contributions: This study demonstrated that Sentiment Analysis can be a method for scrutinizing stakeholders' opinions and perceptions about governmental services at the city level. Practitioner Contributions: Urban Planners, Transportation Policy Makers, and Urban Managers can use Sentiment Analysis to foster stakeholder-oriented management, which in turn fosters democracy and urban performance.
  • Artigo Científico
    Validação de modelos de machine learning por experimentos estatísticos de campo
    (2024) Toaldo, Alexsandro; Vallim Filho, Arnaldo Rabello de Aguiar; Oyadomari, José Carlos Tiomatsu; Mendonça Neto, Octavio Ribeiro de
    Objetivo – Este artigo apresenta uma aplicação prática com o desenvolvimento de um experimento estatístico de campo em uma indústria de latas premium de alumínio nos Estados Unidos, visando validar estatisticamente resultados de modelos de machine learning (ML), previamente construídos. Metodologia: Usou-se conceitos de pesquisa intervencionista, que envolve experimentos de campo onde pesquisador e organização anfitriã atuam em conjunto buscando experimentar no sistema em estudo, e por meio da observação gerar conhecimento. Originalidade/Relevância: Sobre originalidade, não é frequente na literatura modelos de ML validados por experimento planejado de campo, seguido de análise estatística rigorosa. E a relevância da proposta se deve à sua contribuição para a literatura e pelas possibilidades de replicações do estudo em escala maior, na própria empresa ou em qualquer outra com desafios similares. Principais Resultados: Em fase anterior do estudo modelos de ML identificaram as variáveis de maior impacto em ineficiências (geração de sucata) em um processo de produção de latas de alumínio. Essas variáveis foram validadas nesta fase do estudo, através de experimento estatístico de campo, confirmando a significância estatística dos resultados do modelo de ML. Contribuições Teóricas e Práticas: A pesquisa contribui em termos práticos e científicos, pois a validação estatística de modelos de ML por experimentos planejados de campo é uma contribuição para a literatura de ciência aplicada, além de usas possibilidades práticas. Da mesma forma, apesar de amplamente utilizadas em diferentes áreas, pesquisas de cunho intervencionista ainda apresentam lacuna importante nas ciências sociais aplicadas, principalmente na gestão de processos industriais.
  • Artigo Científico
    DSSE: An environment for simulation of reinforcement learning-empowered drone swarm maritime search and rescue missions
    (2024) Falcão, Renato Laffranchi; Oliveira, Jorás Custódio Campos de; Andrade, Pedro Henrique Britto Aragão; Rodrigues, Ricardo Ribeiro; FABRÍCIO JAILSON BARTH; Brancalion, José Fernando Basso
  • Imagem de Miniatura
    Artigo Científico
    Technological Adoption: The Case of PIX in Brazil
    (2024) Gabriel Bernardes Amboage; GUILHERME FOWLER DE AVILA MONTEIRO; ADRIANA BRUSCATO BORTOLUZZO
    Purpose This study investigates the primary determinants of consumers' intention to adopt PIX as a payment method in Brazil, as well as their actual usage behavior. Design/methodology/approach The study employs the Unified Theory of Acceptance and Use of Technology (UTAUT) to analyze both the intention to use and the actual period of use of PIX technology as a measure of practical usage. With this approach, researchers can determine whether people’s intention to use PIX translates into a higher rate of technology adoption and effective and sustained usage. The study collected data from 659 consumers across Brazil through a questionnaire and used structural equation analysis to analyze the data. Findings Research suggests that the intention to adopt PIX as a payment method is mainly determined by the perceived value, performance expectancy, and the habit of using mobile internet. Positive associations are also confirmed between adoption intention, the effective usage time of PIX, and the habit of using mobile internet in conjunction with PIX use. Originality/value The study’s uniqueness stems from its focus on the PIX usage, which is becoming the primary payment method in Brazil. It also measures the practical usage of the technology by examining the duration of user experience. This enables the assessment of whether the intention to use PIX effectively translates into a higher speed of technology adoption.
  • Imagem de Miniatura
    Artigo Científico
    Probabilistic Nearest Neighbors Classification
    (2024) Fava, Bruno; PAULO CILAS MARQUES FILHO; HEDIBERT FREITAS LOPES
    Analysis of the currently established Bayesian nearest neighbors classification model points to a connection between the computation of its normalizing constant and issues of NP-completeness. An alternative predictive model constructed by aggregating the predictive distributions of simpler nonlocal models is proposed, and analytic expressions for the normalizing constants of these nonlocal models are derived, ensuring polynomial time computation without approximations. Experiments with synthetic and real datasets showcase the predictive performance of the proposed predictive model.
  • Imagem de Miniatura
    Artigo Científico
    Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis
    (2024) Bolfarine, Henrique; Carvalho, Carlos M.; HEDIBERT FREITAS LOPES; Murray, Jared S.
    Factor analysis is a popular method for modeling dependence in multivariate data. However, determining the number of factors and obtaining a sparse orientation of the loadings are still major challenges. In this paper, we propose a decision-theoretic approach that brings to light the relationship between model fit, factor dimension, and sparse loadings. This relation is done through a summary of the information contained in the multivariate posterior. A two-step strategy is used in our method. First, given the posterior samples from the Bayesian factor analysis model, a series of point estimates with a decreasing number of factors and different levels of sparsity are recovered by minimizing an expected penalized loss function. Second, the degradation in model fit between the posterior of the full model and the recovered estimates is displayed in a summary. In this step, a criterion is proposed for selecting the factor model with the best trade-off between fit, sparseness, and factor dimension. The findings are illustrated through a simulation study and an application to personality data. We used different prior choices to show the flexibility of the proposed method.
  • Imagem de Miniatura
    Artigo Científico
    Sparse Bayesian Factor Analysis When the Number of Factors Is Unknown
    (2024) Frühwirth-Schnatter, Sylvia; Hosszejni, Darjus; HEDIBERT FREITAS LOPES
    There has been increased research interest in the subfield of sparse Bayesian factor analysis with shrinkage priors, which achieve additional sparsity beyond the natural parsimonity of factor models. In this spirit, we estimate the number of common factors in the widely applied sparse latent factor model with spike-and-slab priors on the factor loadings matrix. Our framework leads to a natural, efficient and simultaneous coupling of model estimation and selection on one hand and model identification and rank estimation (number of factors) on the other hand. More precisely, by embedding the unordered generalised lower trian gular loadings representation into overfitting sparse factor modelling, we obtain posterior summaries regarding factor loadings, common factors as well as the factor dimension via postprocessing draws from our efficient and customized Markov chain Monte Carlo scheme.